Monoidal Company for Accessible Functors

نویسندگان

  • Henning Basold
  • Damien Pous
  • Jurriaan Rot
چکیده

Distributive laws between functors are a fundamental tool in the theory of coalgebras. In the context of coinduction in complete lattices, they correspond to the so-called compatible functions, which enable enhancements of the coinductive proof technique. Amongst these, the greatest compatible function, called the companion, has recently been shown to satisfy many good properties. Categorically, the companion of a functor corresponds to the final object in a category of distributive laws. We show that every accessible functor on a locally presentable category has a companion. Central to this and other constructions in the paper is the presentation of distributive laws as coalgebras for a certain functor. This functor itself has again, what we call, a secondorder companion. We show how this companion interacts with the various monoidal structures on functor categories. In particular, both the firstand second-order companion give rise to monads. We use these results to obtain an abstract GSOS-like extension result for specifications involving the second-order companion. 1998 ACM Subject Classification F.3.2 Semantics of Programming Languages

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abelian Categories of Modules over a (Lax) Monoidal Functor

In [CY98] Crane and Yetter introduced a deformation theory for monoidal categories. The related deformation theory for monoidal functors introduced by Yetter in [Yet98] is a proper generalization of Gerstenhaber’s deformation theory for associative algebras [Ger63, Ger64, GS88]. In the present paper we solidify the analogy between lax monoidal functors and associative algebras by showing that u...

متن کامل

Graphical Methods for Tannaka Duality of Weak Bialgebras and Weak Hopf Algebras

Tannaka duality describes the relationship between algebraic objects in a given category and functors into that category; an important case is that of Hopf algebras and their categories of representations; these have strong monoidal forgetful “fibre functors” to the category of vector spaces. We simultaneously generalize the theory of Tannaka duality in two ways: first, we replace Hopf algebras...

متن کامل

What Separable Frobenius Monoidal Functors Preserve

Abstract. Separable Frobenius monoidal functors were de ned and studied under that name in [10], [11] and [4] and in a more general context in [3]. Our purpose here is to develop their theory in a very precise sense. We determine what kinds of equations in monoidal categories they preserve. For example we show they preserve lax (meaning not necessarily invertible) Yang-Baxter operators, weak Ya...

متن کامل

Limits for Lax Morphisms

We investigate limits in the 2-category of strict algebras and lax morphisms for a 2-monad. This includes both the 2-category of monoidal categories and monoidal functors as well as the 2-category of monoidal categories and opomonoidal functors, among many other examples.

متن کامل

On Parity Complexes and Non-abelian Cohomology

To characterize categorical constraints associativity, commutativity and monoidality in the context of quasimonoidal categories, from a cohomological point of view, we define the notion of a parity (quasi)complex. Applied to groups gives non-abelian cohomology. The categorification functor from groups to monoidal categories provides the correspondence between the respective parity (quasi)comple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017